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ABSTRACT 
 
 
 

This study presented a computational technique to model and simulate atomistic 

behavior of materials under static loads. Interatomic potential energy was used to 

maintain equilibrium among atoms under static loads and constraints. In addition, the 

atomistic model was coupled with the finite element analysis model so that more flexible 

loads and constraints could be applied to the atomistic model. A multi-scale technique 

was also presented for some single wall nanotubes of both zigzag and armchair and then 

their effective stiffness were estimated. Those designed nanotubes are woven into fabric 

composites, which can be used in various military applications including body armors, 

armored vehicles, and infantry transportation vehicles because advanced nano-

composites could be much lighter and stronger than current ones. Some example 

problems were presented to illustrate the developed technique for the nano-composites 

and SWNTs. The proposed technique for nanomechanics can be used for design and 

analysis of materials at the atomic or molecular level. 
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EXECUTIVE SUMMARY 
 

 

There have been a lot of efforts to perform the nanoscale simulation, which is 

based on the potential function among the atoms. The first simulation technique was the 

classical molecular dynamics model. These days, with more quantum mechanics 

calculation, more accurate simulation techniques are developed such as TBMD, 

Carparrinello MD method, and ab initio method.  

In this study, a nanoscale computational technique was developed for atomic or 

molecular equilibrium under static loads. The technique was based on interactive force 

equilibrium among atoms from varous potential functions of classical MD method. The 

interaction among atoms was described by nonlinear springs among them with internal 

forces. The nanoscale atomic model was coupled with the finite element method so that 

boundary conditions could be applied more readily to the model. Some sample examples 

that are comparable to the continuum mechanics were simulated and quite reasonable 

results were obtained. 

Then, two types of single wall carbon nanotubes, either in armchair or zigzag 

pattern, were designed to estimate their effective stiffness, which is quite close to the 

experimental value. Furthermore, the modulus of the nanotube increased slightly with the 

diameter of SWNT.  

Based on the estimated elastic modulus of SWNT, the developed computational 

technique was implemented into a multi-scale analysis of a composite structure that can 

be highly applicable in military. Some examples were given for woven fabric composites 

hypothetically made of carbon nanotubes.  

The results of numerical examples were discussed and compared with other 

studies and experimental data qualitatively. The developed nanoscale computational 

technique was computationally efficient and would be a useful tool for design and 

analysis of materials at the atomic or molecular level. 
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I. INTRODUCTION  

A. BACKGROUND  
These days, a lot of researchers have been contributing their efforts to perform the 

nanoscale simulation to see how the mechanics in nanoscale works or if their nanodesign 

can be modeled practically or not. For their simulations, they have to find the force field 

function, describing the real world as close as possible, among atoms. Actually, finding 

the same force field function as real world is the hardest part in this research field. 

Recently, the quantum mechanics, which deals with the mechanics in very small scale 

such as electron, quark, etc., has been used to derive the force field function. It seems like 

that the force field is getting close to the one of real world by using the quantum 

mechanics. By virtue of the quantum mechanics, some simulation technique, such as tight 

binding method, ab inition method, Carparrinello MD method, has been developed.   

In this section, those simulation techniques: TBMD, ab inition, classical method, 

which are recently important and frequently used, are introduced. In addition, mechanical 

properties of nanotubes and carbon nanotube composite materials from recent researchers 

are examined, which is associated with the investigation of Young’s modulus of SWNT 

and CNT composite materials in this thesis. 

1. Computational Techniques for Nanoscale Simulations 
In 1960’s, some analytical methods are used to compute an infinite system such as 

thermodynamic properties of interacting, bulk condensed-matter systems. But these 

analytical methods had some drawbacks, for those were just valid in a weakly interacting 

system limit and the approximations still had to be carried out numerically beyond a few 

orders. From that time, a tremendous effort was performed into finding a new kind of 

approximation scheme. An exact numerical computation of the properties of a finite-

sample system has become the most common approach to studying interacting 

condensed-matter systems. Molecular dynamics (MD) is commonly used technique in 

which the motion of atoms can be treated in an approximate finite difference equation of 

Newtonian. The MD has been exploited widely besides dealing with very light atoms and 

very low temperatures. 
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When MD began to be used, MD computations mainly used simple pair potentials 

to describe simple phase systems such as inert gases in condensed-phase systems, and the 

materials with hexagonal closed packing structures [1]. As time went by, more complex 

systems were needed to be described such as metals and semiconductors with explicit or 

implicit many-body force-field functions. It began with embedded-atom-method type 

potentials for metals and bond-order type potentials for semiconductors. Researchers 

thought most cases would be solved based on the variations of these three types of 

potentials. However, there was no universal classical potential that provides successful 

results for all materials in all scenarios. So, more attention to the description of dynamics 

with surfaces and clusters were needed. [1] 

For years, quantum MD schemes have been used to compute forces among atoms 

at each time step with quantum mechanics calculations within the Born-Oppenheimer 

approximation and the results were quite accurate [4]. But still the dynamic motions for 

atomic positions are calculated by Newtonian or Hamiltonian mechanics and described 

by MD. The most widely known and accurate scheme is the Carparrinello MD method, 

which describes the electronic states and atomic forces within the local density 

approximation using the ab initio density functional method. Ab initio MD simulations 

now are just performed for the systems, which are composed of a few hundred atoms [4]. 

With large size scale of system, such calculation begins to expand their computational 

resources. In the perspective of system size, the intermediate technique between large-

scale classical MD and small-scale quantum Carparrinello MD methods are semi 

empirical quantum simulation approaches that cover an important range of system size 

where classical potentials are not accurate enough and ab initio computations are not 

feasible. The tight-binding molecular dynamics approach thus provides an important 

bridge between the accurate ab initio quantum MD and classical MD methods [4]. 

Therefore, in computational techniques for nanoscale simulation, those three 

simulations: tight-binding molecular dynamics (TBDM), ab initio quantum MD, and 

classical MD method, can be used in a complementary manner to improve computational 

accuracy and efficiency. We can first investigate an atomic structure of nanosystem. 

Then, we can examine its mechanical or electronic behavior through static ab initio 
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electronic energy minimization schemes or through studies of the system’s quantum 

conductance behavior. When two nanoscale systems are brought together or taken apart, 

we can get highly accurate information on mechanical or electronic behavior from using 

the ab initio method [1,2].   

Subsequently, the three important simulation methods mentioned previously, will 

be examined in following sections. In reference, the most important method in this paper 

is the classical molecular method that is used for this paper’s MATLAB program. 

a. Tight-Binding Molecular Dynamics (TBMD) 
Commonly, it is said that the atom is composed of a set of quantum 

mechanical particles, nuclei, and electrons, and they are formulated by the schroedinger 

equation below [1], 

{ } { }[ , ] [ , ]I i tot I iH R r E R rφ φ=                                                                    (1) 

in which the full quantum many-body Hamiltonian operator is 

2 22 2 2

2 2 | |
I J iI I

I IJ e ij I i

Z Z e pP e Z eH
M R m r R r

= + + + −
−∑ ∑ ∑ ∑ ∑                       (2) 

where IR  and ir  are nuclei and electron coordinates. Applying the Born-Oppenheimer 

approximation, we can assumes that the electronic degrees of freedom follow 

adiabatically the corresponding nuclear positions, and the nuclei coordinates become 

classical variables. This assumption reduces the full quantum many-body problem of 

equation (1) to the quantum many-electron problem as below [1], 

[ ] [ ] [ ]I i el iH R r E rψ ψ=                                                                             (3) 

where 

{ }
2

( )
2

I
I

I

PH H R
M

=∑ +                                                                             (4) 

Correspondingly, the Hamiltonian operator, equation (2) is reduced as 

shown in equation (4). In the tight-binding method, an approximation can make the 

quantum many-electron problems much simpler. We assume that the crystal potential is 
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strong enough for the electron to remain at the site for a while when an ion holds an 

electron during its motion through the lattice. While the ion is holding the electrons, it is 

thought that other atoms around a single ion usually do not affect the electron orbits so 

that its state function corresponds to that of an atomic orbital because the electrons are 

tightly bounded to its own atom [1]. 

One of the advantages of the tight-binding method is to find an energy-

minimized structure of a nanoscale system without considering symmetry constraints [4]. 

From time to time, a symmetry-unconstrained dynamic energy minimization of a system 

helps us find the system’s global energetic minimum, which is not easily interpreted on 

the symmetry consideration by itself. The parallelization of the tight-binding method 

code means that we need to parallelize the direct diagonalization part as well as the MD 

part [1]. Usually, it is hard to parallelize a sparse symmetric matrix with many 

eigenvalues and eigenvectors and that is a cumbersome part in the simulation of large 

intermediate-range system. 

b. Ab initio Simulation Method. 

The complex quantum many-body Schroedinger equations with numerical 

algorithm have to be introduced to explain the ab initio or first principles method, which 

means that ab initio method is one of the quantum mechanics simulation methods. The 

tight-binding method described previously is another quantum mechanics simulation 

method based on the linear combination of atomic orbital approximations to describe the 

quantum mechanical electronic wave functions. Due to the simple basis expansion using 

atomic orbitals, the tight binding method is approximately 1000 times more efficient than 

the ab initio method. But, the ab initio method gives us a more accurate description of 

quantum mechanics behavior of materials properties even though it restricts system size 

to several hundreds atoms. So, these three simulation methods (MD, TBMD, ab initio) 

compose a complementary set of simulation tools to investigate a variety of atomic-scale 

processes in nanodevice modeling. 

The ab initio method has been developed from significant mathematical 

contributions. One of them is to verify a theorem that the ground state energy of a many-

electron system is a function of total electron density, ( )rρ , rather than the full electron 
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wave function, [ ] [ ]: ( ) ( ( ))i el i elr E r E rϕ ϕ ρ≡ . The Hamiltonian operator H  and 

schroedinger equation are given by [1]  

[ ]
2 22 2 2

2 2 | |
I J iI I

I
I IJ e ij I i

Z Z e pP e Z eH R
M R m r R r

= + + + −
−∑ ∑ ∑ ∑ ∑                 (5) 

and  

[ ] [ ] [ ]I i el iH R r E rψ ψ=                                                                             (6) 

where { }IR  and { }ir  are atomic positions and electronic coordinates. The density 

functional theory is derived from the fact that the ground state total electronic energy is a 

functional of the system’s electron density. 

Furthermore, the theory of Walter Kohn and Lu Sham makes things much 

simpler. They have shown that the density functional theory can be reformulated as a 

single-electron problem with self-consistent effective potential including all the 

exchange-correlation effects of electronic interactions [1]: 

[ ]
2

1 ( ) ( ) ( )
2 H XC ion el

e

pH V r V r V r
m

ρ −= + + + ,          (7) 

1 ( ) ( ), 1,.....,i i totH r r i Nψ εψ= = ,           (8) 

2( ) | ( ) |ir rρ ϕ=∑              (9) 

This single-electron Schroedinger equation (9) called the Kohn-Sham 

equation (the local density approximation) approximates the unknown effective 

exchange-correlation potential. This combined method has successfully predicted 

materials properties without using any experimental inputs other than the identity of the 

constituent atoms. With widely used packages for density functional theory simulation, 

the ab initio simulation method is a major computational materials research tool. 

c. Classical MD Method. 
In Classical MD, atoms or molecules move into the equilibrium position 

as many of the atoms and molecules in the vicinity are interacting one other. Basically the 
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forces between atoms or molecules can be derived from the Hamilton’s classical equation 

of motion from Newton’s second law below [1]: 

2

2
I

I
I

d R dVF
dt dR

= = −                   (10) 

{ }
2

( )
2

I
I

I

PH V R
M

=∑ +                            (11) 

{ }( )I I
I

dVF R
dR

= − ,                                                                                 (12) 

which is used to construct Hamilton’s classical equations of motion, which are second-

order ordinary differential equations.   

Every atom or molecule moves and acts like a particle that is moving in 

the many-body force fields of other similar particles. The atomic and molecular 

interactions describing the dynamics are thus given by classical many-body force-field 

functions, and we can write the atomic interaction energy function { }( )IV R  in terms of 

pair and many-body interactions that depend on relative distances among different atoms. 

The atomic forces are analytic derivatives of the interaction energy functions as shown in 

the last equation above. 

After these equations are approximated as finite-difference equations with 

discrete time step ∆ t, the standard Gear’s fifth-order predictor-corrector may be used to 

solve them. The simulations can be performed under a variety of thermodynamic 

equilibrium or nonequilibrium conditions, and we can describe reactions between atoms 

and molecules as the molecular building blocks approach depending on the force-field 

function used [4]. 

In this thesis, the Tersoff-Brenner many-body potential has been used to 

describe atomic interactions in carbon-based systems such as carbon nanotubes. One of 

very outstanding aspects of the Tersoff-Brenner potential is that short-range bonded 

interactions are reactive so that chemical bonds can form and break during simulation. 

With the well-defined potential energy function, the MD code is applied to a collection of 
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atoms. Then the equations of motion are numerically integrated forward in finite time 

steps by using a predictor-corrector method. When it comes to the cost, the computational 

cost of the many-body bonded interactions is relatively high compared to the cost of 

similar methods with no reactive interactions that have simpler functional forms.   

2. Nanomechanics of Carbon Nanotubes. 

a. Carbon Nanotube 
As shown in Figure 1 below, the carbon nanotubes is a fullerene-related 

structure, which is composed of a graphene cylinder and closed with end caps containing 

pentagonal rings. It was discovered in 1991 by the electron microscopist Sumio Iijima 

who was studying the material deposited on the cathode during the arc-evaporation 

synthesis of fullerenes. He found that the central core of the cathodic deposit contained a 

variety of closed graphitic structures including nanoparticles and nanotubes, which had 

never been observed previously. After finding those structures, Thomas Ebbesen and 

Pulickel Ajayan, from Iijima's lab, showed how nanotubes could be produced in bulk 

quantities by varying the arc-evaporation conditions. This opened a revolutional way to 

the experiment for various properties of carbon nanotubes all over the world. 

So, the carbon arc evaporation method became the first way to fabricate 

the carbon nanotubes. Recently, some other ways have been found to produce the 

nanotubes, which are laser ablation or pulsed laser vaporization method, chemical vapor 

deposition method and recently high-pressure CO conversion method for bulk of SWNT. 

 

 

(a) SWNT 
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(b) Side view of a bundle of carbon nanotube from SEM 

Figure 1.   Nanotube 
 

b. Mechanical Properties of Carbon Nanotube 
After the nanotube was found, further investigation has shown that Single 

Wall Carbon Nanotubes (SWNT) and Multi Wall Carbon Nanotubes (MWNT) have 

outstandingly strong and stiff mechanical characteristics along the axis of nanotube and 

flexible characteristics along the normal to the tube’s axis. The Young’s modulus of a 

SWNT is expressed as 2 2/Y E V ε= ∂ ∂ , where E is the strain energy and V is the volume 

of the nanotube. When some simulation techniques mentioned before are used, the 

Young’s modulus of nanotube approximately ranged from 1 to 1.2 Tpa which are mostly 

within the range of experimental observations. It is interesting that SWNT has stiffer than 

MWNT for the axial strain because it has smaller radii of curvature and relatively defect 

free structure. But for non-axial strain, the MWNT is much stiffer [2].   

The bending stiffness of a SWNT is expressed as 2 2/d E LdC , in which E 

is the total strain energy, L is the length, and C is the curvature of the bent nanotube. 

From the simulation, the bending Young’s modulus of SWNT varied with diameter; the 

bending modulus decreases with the increase in tube diameter. For a small diameter 

SWNT the bending modulus was about 0.9 Tpa. In torsional stiffness, which is described 

as 2 2/K d E Ldθ= , where E is the total strain energy and θ  is the torsion angle, there is a 

; I : 
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relation between the torsion stiffness and the shear modulus. From some simulation, the 

shear modulus of a carbon nanotube was found to be 0.3 Tpa and it was not remarkably 

dependent of the tube diameter [2]. 

In the perspective of compression using classical molecular dynamics 

simulations with Tersoff-Brenner potential, it is shown that the tubes are extremely stiff 

under axial compression, and the system remains within elastic limit even for very large 

deformations like 15% strain [5,6].   

                

          (a)                                                               (b) 

Figure 2.   Axial compression and plastic collapse of (a) SWNT, (b) MWNT [2] 
 

When the SWNTs and MWNTs are compressed beyond elastic limits, 

they undergo a sideway buckling, which is associated with nonlinear elastic instability, as 

shown in Figure 2 [2]. But once the external load disappears, the system returns to the 

original state. Deformations such as plastic collapses or fractures of thin nanotubes 

without any buckling also appear in experiments, but these deformations have never 

appeared in classical MD simulations with the Tersoff-Brenner potential.   

c.  Mechanical Properties of CNT Composite Materials 
Since the nanotube has very good electrical and thermal conduction 

capabilities, it can be recommended for composite materials with light weight and multi-

function. But simulations of nanotube-polymer composites are so far not widely 

performed. It is expected for the resulting composite materials to have the outstanding 

mechanical, thermal and electrical characteristics of individual SWNTs and MWNTs in a 
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polymer, ceramic or metal matrix. There were some efforts to investigate characteristics 

of nanotube-polymer composite materials. From most measurements, it was suggested 

that there was a very modest increase in strength properties of CNT-polymer matrices 

compared to original polymer matrices. Also there were a few attempts to characterize 

mechanical and thermal properties of CNT composite materials with MD simulations. In 

preliminary MD investigations of the nanotube-polymer composites above glass 

transition temperature, the thermal expansion coefficient of the composite matrix and 

diffusion coefficients of the polymer molecules increase significantly over their bare 

polymer matrix values [2]. Mixing 5-10% of nanotubes in the polyethylene polymers 

increases the thermal expansion coefficient by as much as 40%[3].  

A SWNT is usually a hard material possessing a Poisson ratio of 0.1 to 0.1 

while polyethylene is a softer polymeric material with Poisson ration of about 0.44. Due 

to the difference of the Poisson ratio, there is a resistance from the hard fibers to their 

surrounding matrix and the tensile stress causes the compressive pressure in the 

composite materials when the composite containing SWNT is under tensile strain. Thus, 

from that mechanism, the modulus of a composite can be enhanced even when bonding 

between the SWNT fibers and the polymer matrix is not very good. So the Young’s 

moduli of the nanotube-polymer composites are found to be increased by about 30% for 

strain [7]. 
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B. OBJECTIVES 

Recently, much attention has been devoted to the study of material behavior at the 

atomic or molecular level. For example, there has been extensive research in carbon 

nanotubes [8-10] because they have very high stiffness and strength. Other nanoscale 

researches focused on the crack behavior and fracture [12-17]. 

Those studies used molecular dynamics models or atomic models to simulate the 

material behavior at the nano-scale [18,19]. Most of the simulations were dynamic 

analysis using Newton’s second law and different potential energies among neighboring 

atoms or molecules. Static equilibrium positions are time averages of the dynamic 

equilibrium motions. It is quite a time consuming process to compute the static 

equilibrium positions of atoms or molecules from dynamic analysis. 

In this study, there are some efforts to develop a computational technique to 

model and simulate atomic behavior under static loads and constraints. In addition, in 

order to make it easy to apply various loads and constraints, the atomic model was 

coupled with finite element model. The atomic model is a discrete model while the finite 

element model is a continuum model. Furthermore, some SWNTs with varying diameter 

are modeled to predict the elastic modulus of those SWNTs by using developed 

computational technique and compare the results to other studies and experimental data. 

Finally, the modulus of nanotube composite is to be examined for two different types of 

woven fabric composites as well.   
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II. ATOMIC MODEL 

A. ATOMIC FORCE POTENTIAL ENERGY 
The atomic model is based on equilibrium of interatomic forces along with 

boundary conditions. The interatomic forces are computed from the potential energy. 

There are many potential energies proposed so far depending on the nature of material 

and their chemical bonds. One of the commonly used potential energies for metals has 

been the Morse function while the Abell-Tersoff-Brenner potential has been adopted for 

carbon, hydrogen, and hydrocarbons.  

The Morse function describes the potential energy )( ijrΦ  of two atoms i and j 

with a distance ijr  as below 

[ ])()(2 2)( oijoij rrrr
ij eeDr −−−− −=Φ αα          (1) 

in which D and α  are constants with dimensions of energy and reciprocal distance, 

respectively. The or  is the equilibrium distance of the two atoms with Dro −=Φ )(  as 

shown in Equation (1). The constants in Equation (1) were provided in Reference [15] for 

various pure metals. The force between the two atoms is computed from 

r
ij

ij n
r

rF
∂
Φ∂

−=)(           (2) 

in which rn  is the unit position vector between the two atoms. The forces among N atoms 

in a given system must be in equilibrium using Equation (2). 

The Abell-Tersoff-Brenner potential for carbon is expressed as 

)()()( ijAijijRij rVBrVr −=Φ          (3) 

where 

  )(2)(
)(

)1/()()(
e

ijijijij RrS
ij

e
ijijijijR eSDrfrV −−−= β        (4) 

  )(/2)(
)(

)1/()()(
e

ijijijij RrS
ijij

e
ijijijijA eSSDrfrV −−−= β        (5) 
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
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2
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θ
θ

o

o

o

o
o d

c
d
caG          (9) 

Here, θ is the angle between atoms i-j and i-k. The constant values in these 

equations are provided for carbon, hydrogen, and hydrocarbons in Reference [16]. 
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B. ATOMIC FORCE EQUILIBRIUM 

 
Figure 3.   Relative positions of two atoms before and after movement 

 

Consider any two atoms that are located at i and j as shown in Figure 3. The 

present position vector from atom i to j is denoted by ijr . Let each atom be displaced by 

iu  and ju , respectively, to the new positions i’ and j’. Then, the new position vector 

between the two atoms is expressed as ijR . The displacement vectors and position vectors 

are related as 

ijijijijij uruurR ∆+=−+=         (10) 

where ijij uuu −=∆  is the relative displacement vector of the two atoms. 

The force between atoms i and j at the new positions is expressed as Equation (4), 

   Rijijijij nRFRF )()( =         (11) 

where ijR  is the distance between the two displaced atoms, and the Rn  is the directional 

unit vector along the vector ijR  and it is expressed as below: 

ij

ijij
R R

ur
n

∆+
=          (12) 

 

y 

A 

/ 
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Substitution of Equation (12) into Equation (11) yields 

  
ij

ij
ijij

ij

ij
ijijijij R

r
RF

R
u

RFRF )()()( +
∆

=       (13) 

Equation (13) results in a matrix expression as shown below 
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in which  

  
ij

ijij

R
RF

k
)(

=          (15) 

  )(
)(

ji
ij

ijij
jxix xx

R
RF

FF −=−=        (16) 

  )(
)(

ji
ij

ijij
jyiy yy

R
RF

FF −=−=        (17) 

  )(
)(

ji
ij

ijij
jziz zz

R
RF

FF −=−=        (18) 

The matrix expression in Equation (14) is computed for all atoms that interact one 

another and it is assembled into the system matrix consisting of all atoms’ displacements. 

This resultant system matrix equation is nonlinear and it is solved after applying 

constraints. Because ijR  and )( ijij RF  are unknown a priori, iu , ju  and ijR  are assumed 

initially or from the previous solution of iteration. Then, computation continues 

iteratively until the solution converges. The convergence criterion is the difference 

between the presently assumed positions and the newly computed positions of all atoms. 

When the difference is small enough, the solution stops. 

 

 



 17 

C. COUPLING BETWEEN ATOMIC FINITE ELEMENT MODELS 

Applying various boundary conditions to the atomic model is rather cumbersome. 

Therefore, it is beneficial to couple the atomic model with the finite element model along 

the boundaries of the atoms. Then, boundary conditions can be applied to the finite 

element model more easily. In order to combine the discrete atoms and a continuous 

medium, the atomic model and the finite element model of the continuous medium must 

be coupled properly. For simplicity, consider a two-dimensional coupling between the 

two models even though the same algorithm can be applied to three-dimensional bodies. 

Figure 4 shows atoms surrounded by a continuous medium discretized for a finite 

element mesh. In the figure, the inner domain is the atomic domain while the outer 

domain is the finite element domain of continuous medium. The intermediate domain 

bounded by bold lines is called interface domain where both atoms and finite element 

meshes overlap each other.  

 

 

Figure 4.   Coupling between atomic and finite element domains 
 

Interface 
Domain 
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The atomic and finite element models are solved independently in a staggered 

manner. The solution procedure for the coupled problem is explained below: 

1. Solve the finite element domain equation }{}]{[ fff FuK = . From now on, 

subscripts f and a denote finite element and atomic solutions, respectively. 

2. Compute the embedded atoms’ displacements from the finite element nodal 

displacements using the finite element shape functions such as }]{[}{ e
f

e
a uNu =  

where superscript e indicates the embedded atoms or finite elements containing 

such atoms, and ][N  is the shape function matrix of finite elements. 

3. Compute the new positions }{ e
ax  of the embedded atoms by adding the 

displacements computed above to the previous positions.   

4. Solve for the rest of atoms’ new positions with fixed embedded atoms’ 

positions using the atomic model. 

5. Compute the interactive forces }{ e
aF  on the embedded atoms exerted by all 

atoms. 

6. Compute the equivalent nodal forces of the finite elements containing the 

atoms using dVFNF e
aV

Te
f e

}{][}{ ∫=  where eV  is the element volume 

containing atoms. 

7. With the nodal forces computed above, the new finite element solution is 

obtained. Then, continue the process from Step 2. 
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III. NUMERICAL RESULTS AND DISCUSSION 

A. ATOMIC MODEL ONLY 

1. Square and Hexagonal Atom Array with Hole at the Center 

a. Square Atom Array with Hole at the Center 

Figure 5 shows a two-dimensional 21x21 square array of atoms with 

vacancies of atoms at the center. The atoms on the four boundaries could move 

tangentially along the boundary but not perpendicularly. Figure 5(a) shows our initial 

square atom array with atoms removed at the center. Figure 5(b), 5(c) shows that the 

atoms are moving in the downward direction to satisfy the potential equilibrium under the 

constraints of fixed bottom atoms. The arrows in Figure 5(b) indicated the directions and 

magnitudes of the movement of each atom. The equilibrated position of atoms is shown 

in Figure 5(c) 
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(a) Initial array with a hole 
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       (b) Movement for equilibrium 
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(c) Equilibrated position of atoms 

After that equilibrium state, the atoms look for the new equilibrium 

position as the top boundary is incrementally displaced uniformly in the upward direction 

as shown in Figures 5(d) through 5(e). After the movement of each atom shown in Figure 
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5(d), Figure 5(e) shows that the new equilibrated position of atoms under upward 

displacement. As shown in Figure 5(e), some amount of movement of atoms in upward 

direction can be examined due to the applied displacement in upward direction.  
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(d) Upward displacement 
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(e) New equilibrated position of atoms 

Figure 5.   Square array of atoms with a hole. 
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b. Hexagonal Atom Array with Hole at the Center 

Figure 6 shows a two-dimensional 41x41 hexagonal array of atoms, which 

is much more similar to real atom array than square one, with vacancies of atoms at the 

center. The boundary conditions and the number of atoms are the same as the ones of 

square array case. Figure 6(a) is the initial array of atoms. The number of atom was 

increased to see difference with 21x21 square atom array in atomic behavior. As shown 

in Figure 6(b), the atoms have shrunk down in downward direction to satisfy the potential 

equilibrium and went to the equilibrium state like Figure 6(c). As we did in square atom 

array, the upward displacement was placed to the top atom line. The atomic behavior was 

generally similar to the one of the 21x21 square atom array as shown Figure 6(d), 6(e). 

The arrows in Figure 6(b), (d) tells the direction and magnitude of movement of atoms in 

hexagonal array.   
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(a) 



 23 

−50 −40 −30 −20 −10 0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

x−axis

y−
a

xi
s

 

(b) 
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(c) 
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(d) 
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(e) 

Figure 6.   Hexagonal array of atoms with a hole. 
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2. Square Atom Array with Dislocation 

Figures 7(a), 8(a), 9(a) show initial equlibriums of atoms with a dislocation 

oriented in 27, 45, 63 drgrees respectively to the horizontal axis. The boundary and 

loading conditions were the same as the hole case.   
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(b) 

Figure 7.   Square array of atoms with a dislocation with 27 degree orientation. 
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As the tensile load is applied in the vertical direction at the top boundary, the 

displacements of atoms into the new equilibrium in each case are depicted in Figures 

7(b), 8(b), 9(b). These figures illustrates how a slanted dislocation affects the movement 

of atoms under a uniform load.   

 

(a) 

 

(b) 

Figure 8.   Square array of atoms with a dislocation with 45 degree orientation. 
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(b) 

Figure 9.   Square array of atoms with a dislocation with 63 degree orientation. 
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3. Square Atom Array with Hole and Dislocation 

Figure 10(a) shows that the initial 31x31 square atom array with hole and 

dislocation of 45 degrees direction to the horizontal.   
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(b) 
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To find equilibrated position of atoms, the potential energy function was used. 

The arrows in Figure 10(b) show the movement of atoms to reposition their sites and 

Figure 10(c) shows the equilibrated position. 
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(d) 
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(e) 

Figure 10.   Square array of atoms with a dislocation and a hole. 
 

As shown in Figure 10(e), it indicates the new equilibrated array after the upward 

direction displacement is applied to the equilibrated state. It can be examined that the 

some amount of displacement of the array in upward direction due to the applied 

displacement. 

4. Square Atom Array with a Notch 
Figure 11 shows the case of square atom array with a notch. Figure 11(a) is the 

initial array of atoms in which the atoms on the left-side and bottom line boundaries are 

constrained from normal displacements to the boundaries and all other atoms are free t to 

move. Figure 11(c) shows the final array of atoms after the movement of atoms to satisfy 

the equilibrium of potential of atoms while Figure 11(b) shows the movement of atoms 

during that process. In Figure 11(d), arrows indicate movements of atoms as the top 

boundary is displaced uniformly in the upward direction. It can be seen that atoms above 

the notch are moving larger than the ones below the notch, which means that the notch is 
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getting increased with the applied displacement. Figure 11(e) shows the final array of 

atoms after movements. 
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(b) 
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(c) 
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(d) 
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(e) 

Figure 11.   Square array of atoms with a notch. 
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B. COUPLED MODEL OF ATOMIC AND FINITE ELEMENT MODEL 

1. Hexagonal Array of Atoms with a Dislocation 

For the coupled model, uniform shear or axial force was applied at the top of the 

finite element model. Figure 12(a) shows the atoms surrounded by the finite element 

mesh. The finite element mesh makes easy to apply loading and constraint boundary 

conditions. In order to model dislocation, a small number of atoms were removed at the 

center. Figure 12(b) is the initial equilibrium positions of atoms. Figures 12(c) through 

12(e) shows the movement of atoms under shear, tensile, or compressive load 

respectively. The displacements of atoms were magnified in the arrow plots. Therefore, 

the final positions of atoms are not at the tip of the arrows. Figure 12(f) shows the final 

atomic positions with the applied shear load associated with Figure 12(a). Arrows 

indicate movements of atoms as the top boundary is displaced uniformly in the upward 

direction. 

 

 
 

(a) Initial coupled model with dislocation. 
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(b) Equilibrated positions 
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(c) Shear load. 
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(d) Tensile load. 
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(e) Compressive load. 
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(f)Atomic positions with the shear load 

Figure 12.   Hexagonal array of atoms with a dislocation.    

 

2. Atomic Array Embedded in the Finite Element Mesh with a Crack 
The model studied the atomic behavior at the tip of a crack. The atomic model is 

embedded inside the finite element analysis model at the crack tip location as shown in 

Figure 13. Two different shapes of atomic arrays were considered: square and hexagonal 

arrays. The finite element domain was constrained at the bottom edge and uniformly 

stretched at the top edge. In other words, the problem was the uniaxial tensile loading 

case. Displacements of atoms at the notch tip zone are plotted in Figures 14 and 15 for 

the square and hexagonal arrays, respectively. In those figures, the atomic displacements 

were plotted relative to those of the atom at the crack tip, which was located at the origin 

of the coordinate system, i.e. (0,0). Therefore, the crack tip displacement was zero. 

Because of symmetry, a half of the atomic domain was plotted in those figures. There 

was a very minor difference between the two arrays of atoms. Therefore, the atomic 

arrangement barely affected the atomic displacements. Both figures clearly show larger 

vertical displacements of atoms, as they get closer to the notch tip position. For 
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comparison, the displacements very near the crack tip in a continuous body are illustrated 

in Figure 16. The atomic displacements and continuum displacements were qualitatively 

similar even if there were differences in details. 

 
Figure 13.   Atomic Array Embedded in the Finite Element Mesh with a Crack 
 
 

 

 

Figure 14.   Atomic Displacements in a Square Array Near the Crack Tip 
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Figure 15.   Atomic Displacements in a Hexagonal Array Near the Crack Tip 

 

 
Figure 16.   Displacement Field Near the Crack Tip in a Continuous Medium 

 
3. Atomic Behavior at the Crack Tip 

The atomic behavior was examined with some vacancies of atoms at the crack tip. 

Figure 17 shows the embedded atoms in a finite element mesh. An edge crack is shown 

in the figure and the atoms are located around the crack tip. The two left bottom nodes 

were constrained while the left top nodes were subject to tensile force.   

The initially equilibrated atoms before external loading is shown in Figure 18. 

Then, tensile load was applied at the left side of the model like a compact specimen under 

tensile load. In other words, tensile forces were applied to the top left nodes while 

constraint of movement was applied to the bottom left nodes. Figure 19 is the plot for 

atomic movement with the tensile load and the final atomic positions in equilibrium with 

the external load. It was examined that there was a small size of crack at the bottom site  
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Figure 17.    Atomic and Finite Element Model with a Crack 
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Figure 18.   Initial Equilibrium Positions of Atoms 
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Figure 19.   Movement of Atoms with Tensile Opening Force 

 

 

 

Figure 20.   Final Equilibrium Positions of Atoms with Tensile Opening Force 
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of the notch tip because of the stress concentration at that point. To see if there is stress 

concentration at that point in a continuous medium, a commercial program, MSC 

PATRAN/NASTRAN was used. As shown in Figure 20, the highest stress point exactly 

corresponds to the one of our developed model, which means that the atomic behavior in 

nano-scale is quite comparable to the one in the continuum material. 
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C. ESTIMAION OF EFFECTIVE STIFFNESS OF NANOTUBES 

1. Armchair Nanotube 

As mentioned in background section, we consider two types of nanotubes, which 

are armchair and zigzag. One armchair nanotube is shown in Figure 21(a) below. Figure 

21(b) is our initial armchair model of (6,6) SWNT that has the closing atom arrays at 

both sides of tube. Then one atom at the bottom was fixed in all direction to prevent the 

rigid body motion of nanotube and the other atom at the top section is fixed at x-y 

direction and free to go z-direction. 
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                            (a)                                                          (b) 

Figure 21.   Armchair nanotube model 
 

From the Tersoff-Brenner potential function, the equilibrium state of our initial 

armchair model is presented in Figure 22(a). It is noticed that the entire size of the tube 
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has decreased to satisfy the potential equilibrium among atoms. After the atomic 

equilibrium state, the axial tension force was applied to the atoms at the top circle in z-

direction. As a result of the force, it was examined that the nanotube had some elongation 

due to that tension force in some amount of length as shown in Figure 22(b). From that 

elongation, the effective stiffness of our nanotube model could be calculated as below. 

E σ
ε

= , 

where Force
Area

σ =  and l
l

ε ∆=  where l∆  is the elongated length of tube and l  is initial 

length of the tube.   
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                            (a)                                                          (b) 

Figure 22.   (a) Armchair nanotube in equilibrium, (b) Elongated nanotube 
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Using the equation above, Young’s modulus of our armchair carbon nanotube 

model can be found along tube axis. The estimated modulus value of the tube ranged 

around 1.0 Tpa for (6,6) chiral vector. Compared to Young’s moduli values from other 

simulation techniques such as classical MD, ab initio method, or the experimental 

estimation, the modulus value from our simulation was quite close to those values that 

range from 1 to 1.2 Tpa. Furthermore, the nanotube model that has 12 circumferential 

atoms was developed as shown Figure 23(a) and 23(b) so that the radius of the carbon 

nanotube can be changed, which allowed  
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                            (a)                                                          (b) 

Figure 23.   (a) 12 atom circumference in equilibrium, (b) Elongated nanotube 
 

us to get the different modulus value. And it was noted that the modulus of nanotube was 

getting decreased with decrease of the radius of the nanotube. A previous research stated 

that Young’s modulus of CNT is slightly dependent on the tube size especially for small 
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diameter nanotubes (D<1.2nm) [reference2], our results are quite corresponding to those 

results. In other words, the modulus increases with increase of tube diameter.  

2. Zigzag Nanotube 

The other type of nanotube is the zigzag that is shown in Figure 24(a), which has 

the chiral vector of (12,0). Figure 24(b) is initial simulation model. The atoms for the top 

and bottom of the tube were filled in same way as the previous armchair SWNT and the 

constraints are the same as well. From the same way of finding the modulus of armchair 

nanotube, the predictable modulus of the model was about 1.40 Tpa for (12,0) SWNT, 

which is quite similar to the one of the (6,6) SWNT.  
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Figure 24.   Zigzag SWNT model  

Also, for the small size of zigzag SWNT, (6,0) SWNT that has 12 circumferential 

atoms was modeled and approximately Young’s modulus of 1.1 Tpa was 
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investigated. Compared to other studies, it corresponds to the result that the 

young’s modulus slightly increases with the tube diameter.  
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D. MULTI-SCALE ANALYSIS OF A COMPOSITE STRUCTURE MADE OF 
CARBON NANOTUBES  

The last example used a multi-scale analysis of a composite structure made of 

carbon nanotubes as illustrated in Figure 25. Fibers were assumed to be composed of 

bundles of single-walled nanotubes and the fiber strands were woven to a fabric. The 

composite structure was made of multi-layers of the fabrics in various orientations. The 

present example was to compute the effective material properties of the woven-fabric 

composite lamina. Two different types of woven fabrics were considered. One was the 

plain-weave fabric and the other was the 2/2-twill weave fabric.  

As shown in previous section, the modulus of SWNT depends on the radius of 

tube. So it is assumed that the SWNT of (12,0) chiral vector is used for the woven-fabric 

composite. At the next step, long continuous fibers were fabricated from the nanotubes. 

Then, the longitudinal elastic moduli of the unidirectional composite were 750 GPa using 

the fiber-strand model as provided in [22] with an assumption of 50% fiber volume. The 

elastic moduli of the plain weave composite made of the strands were computed as 360 

GPa in the inplane direction using the strand-fabric model [23]. The same strands were 

used in both fill and warp directions. The 2/2-twill composite woven using the same fiber 

and matrix materials had the elastic moduli of 220 GPa in the inplane.   
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Figure 25.   Multi-scale analysis of a laminated composite structure 
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IV. CONCLUSION 

In this study, a nanoscale computational technique was developed for atomic or 

molecular equilibrium under static loads. The technique was based on interactive force 

equilibrium among atoms using potential function of Classical MD. The interaction 

among atoms was described by nonlinear springs among them with internal forces. The 

nanoscale atomic model was also coupled with the finite element method so that 

boundary conditions could be applied more readily to the model. A variety of example 

problems with nanoscale defects or atomic dislocations were presented to demonstrate 

the developed computational technique.  

Then, some SWNTs were consedered to estimate the effective stiffness of the 

nanotubes, which varies with the diameter of SWNT. Based on the estimated elastic 

modulus of SWNT, the developed computational technique was exploited into a multi-

scale analysis of a composite structure. From the sample simulation, using carbon 

nanotubes as fibers has a positive influence on the effective stiffness of the woven fabric 

composites. Also, those nano-composites will be used in numerous ways in military as 

well including the aircraft, body armor, infantry transportation vehicles, and bridges etc. 

due to its advanced properties such as light weight and high strength. 

Using the nonlinear spring concept for the interaction among atoms produced 

quite reasonable results compared to the ones of other researches and experimental data 

qualitatively. The developed nanoscale computational technique was computationally 

efficient and would be a useful tool for design and analysis of materials at the atomic or 

molecular level. 
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V. RECOMMENDATIONS 

This work developed a simulation technique utilizing the different potential 

functions. Nonlinear spring concept for interaction among atoms was used to predict the 

atomic behavior in nanoscale, the effective stiffness of single wall nanotube, and 

composites made of carbon nanotubes. There could be various and numerous applications 

to this developed computational technique. It is recommended that further study be 

conducted in the following areas: 

•  Another computational technique is recommended to model and simulate 

atomistic behavior of materials under dynamic loads such that atomic or 

molecular behavior could be examined under the various dynamic load cases. 

 

•  Other mechanical properties of SWNT can be investigated such as 

bending stiffness, torsion stiffness or shear modulus of the nanotubes 

changing the static loads and constraints. 

 

•  For more accurate atomic potentials, other potential functions from 

quantum mechanics like ab initio method could be exploited into our 

developed computational technique. 

 

•  It is recommended that with designed nano-composites, actual models 

being used in military such as body armor or bridges, which are made of 

nano-composites can be simulated and tested if it’s efficient and applicable or 

not. 
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